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As data gets bigger
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We are generating data faster than ever

6.7 billion store transactions per month
30+ million retail items measured
1.6 trillion online impressions per year

40,000 Google searches per second
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It's important to differentiate between Big Data, an
“a lot of data”

Disparate data sets allow for better validation and creation of new insights
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Chaos- Order- Chaos
The more assumptions we make,the less predictable the

result.
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The growth of data science as discipline leads to ¢
need for more data

Google Dataset Search ..

Try boston education data or weather site:noaa.gov

Learn more about including your datasets in Dataset Search.
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Sentiment Analysis
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What can we measure using sentiment analysis?
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Twitter ~ Video  Facebook* Instagram* Reddit*™* Weibo* VK*™* Blogs Forums Reviews

ny (US), LLC. Co

* For Facebook we harvest data based on page search (not keyword search), and are only able to harvest from public pages For Instagram we are only able fo
harvest from up to two brand or group pages.
** An additional data cost may be incurred for these these sources.

Copyright © 2019 The Nielsen Compa
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Example of premiership football teams

SHARE OF VOICE (SoV) = QUARTERLY TREND NET SENTIMENT SCORE (NSS™) - QUARTERLY TREND
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Possible applications:

Sentiment analysis could be used to provide a streaming understanding of
consumer sentiment.

 Qverall sentiment

« Sentiment specific to specific socio-political-economic issues or
policies

* Future state: early crises warning

10
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WFP: Predicting Food
Consumption Score (FCS)
1 using external data
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The Food Consumption Score (FCS)

via Questionnaire

FCS

(Caloric Sufficiency)

Food Frequency

nielsen
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#PROJECT8HACKFORHUNGER

Nielsen virtual hackathon to solve a key issue raised by the WFP:

Question

How can changes in food prices (or
food security) be predicted on
the basis of publicly available
data?

Output

A predictive model taking in public
information such as commodity
prices, rainfall, or any other
publicly available information.

Measure of success: A model that
can predict the FCS with 80%
accuracy

14
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Commodity prices showed little predictive ability bt
the previous months score by food type showed
some strong correlations to the next months FCS
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The final model showed an average accuracy of 9
Addressing goal 2 of the UN Sustainable Development Goals

Predicted (line) vs. Actual (dots) FCS Scores
over the 20 Months, Yemen

42.5
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' Home stores vs
. Unemployment
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THE RETAIL AUDIT PROCESS

D 5. Reported Outputs
4. Statistical expansion

of sample to universe

3. Data collection
Collect data both Scan/POS and Manual Audit data

2. Design representative sample
How many of each store type do we need to represent the measured
Retail Trade Universe?

nfidential and proprietary.

Define store types and gain information on shop numbers & turnover

Copyright © 2017 The Nielsen Company. Co
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Establishing the Retail Trade Universe

Rolling Establishment survey is conducted every six months

South Africa
Stats SA
SAL Boundaries

H‘;& 1?54"1"“
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South Africa

by SAL

[ |Resrons @e0m)
SA Provincial

] socnseres

niclsen "'45*"

Field auditors walk every road
and footpath to count the
stores in the SAL as well as
their characteristics

Statistics South Africa

Starting with the smallest
statistical representation of
the country

(South Africa = Small Area
Layers)
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A spaza shop is an informal convenience shop
busmess irBouth Afrlcausually run from home.
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https://en.wikipedia.org/wiki/South_Africa

A
=

“People who lose their job, or can'’t find
work in the major urban areas are
returning home and opening spazas”

Nielsen Data Acquisition

22
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The trend of Spaza Stores follows that of
unemployment with a correlation of 86%

South Africa Unemployment vs Spaza Stores

== Unemployment Numbers (000's) == Spaza Universe Numbers
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. . . . . 2
Nielsen Data Universe Estimation (Spaza Universe Numbers) 3
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At a regional level six of nine provinces show a
strong correlation (r > abs(0.6))

Correlation by Province
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What are the implications?

Addressing goal 8 of the UN Sustainable development goals

nielsen

Change YoY in
Unemployment

Change YoY in

Spaza Numbers

% of Unemployment
change accounted for
by spaza openings

2016-17 W1 363,000 4,179 1.15%
2016-17 W2 243,000 3,628 1.49%
2016-17 W3 197,000 1,723 0.87%

Difficulties in opening stores:

e Access to credit
e Access to goods
e Entrepreneurial Skills

© 2019 The Nielsen Company (US), LLC. Confidential and proprietary. Do not distribute.
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Levers that can be pulled:

e Governmental loans to
grassroots entrepreneurs

e Creation of networks to enable
buying partnerships and easier
distribution

e Small scale educational
programs via training colleges 2
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